## MK 系列称重模块通信协议及应用

## 一、数据协议

MK 系列称重模块采用 Modbus rtu 标准数据协议,设备作为从设备,联机应用时,采用应答模式与主机通信。称重模块支持 Modbus rtu 协议三个功能号:

03H 功能号: 读数据信息; 06H 功能号: 写控制命令; 10H 功能号: 写数据信息。

"MK"标识为沈阳龙腾电子有限公司数字称重产品的尾部标识, 称重模块的代表符号, 不作为产品的具体型号。

#### 1、读数据信息命令:

| 主站报文格式  |         |                 |                 |                 |
|---------|---------|-----------------|-----------------|-----------------|
| byte[0] | byte[1] | byte[2] byte[3] | byte[4] byte[5] | byte[6] byte[7] |
| C6 值    | 03      | Addr            | Len             | CRC             |
| 站号      | 功能码     | 起始地址 HEX        | 寄存器字长           | CRC 校验位         |

C6 值: 即设备的地址, 占用 1 个 Byte, 见第二节的"站号(地址)设定"中的"C 参数"设置。

#### 不同地址对应数据关系:

| 地址 HEX  | 2000H | 2010H | 2020H | 2030H |
|---------|-------|-------|-------|-------|
| 字长度 HEX | 3     | 8     | 8     | 8     |
| 数据意义    | 重量数据  | C参数   | 厂家配置  | 厂家配置  |

#### 其他地址:

2040H, 字长度 8: 系统预留;

2050H, 字长度 8: 系统预留;

2050H, 只读, 字长度 8 : 量程及精度信息, 从站响应数据同 2010H 的 C 参数格式, 数据区域为 ASCII 形式字符串, 如" 220g / 0.0001g" 表示最大称量 220g, 最小读数 0.0001g。

#### 2000H, 只读, 字长度 3: 重量数据, 从站响应数据如下:

| byte[0] | byte[1] | byte[2] | byte[3]  | byte[4] | byte[5~8] | byte[9~10] |
|---------|---------|---------|----------|---------|-----------|------------|
| C6 值    | 03      | 6       | X3/X0/X1 | 04      | Int32     | CRC        |
| 站号      | 功能码     | 数据字节长度  | 稳定信息     | 小数位数    | 数据        | CRC        |

byte[3]低四位: 数据稳定信息, 意义说明如下:

3H: 稳定数据 0H: 不稳定数据; 1H 不稳定数据, 但接近稳定数据

byte[3]高四位: XH: 预留数据扩展信息,如传感器系统向外发出的状态信息,暂未定义

byte[4]: 小数点位数, 如 04 代表小数点后面 4 位有效数据

byte[5~8]:响应数据:分为重量数据和特征数据

如上位机发送指令: 00 03 20 00 00 03 0F DA (示例为 公共站号 0)

称重模块接收到指令以后, 响应数据如下:

02 03 06 03 04 00 00 00 00 C4 76

称重模块站号 02; 功能号 03; 数据长度(字节) 06; 稳定数据: 03; 小数位数:

04; 重量数据或特征数据: 00 00 00 00; 校验数据 C4 76

重量数据: 小于 0FFF0000H;

## 特征数据:

# (1) 、大于等于 0FFFFF00H 特征数据代表的意义

| 0FFFFF00H 偏 | 意义                            | 天平显示特征示例 |
|-------------|-------------------------------|----------|
| 8量          | 最大整量点提示                       | 200.0000 |
| 1           | 线性标定结束                        | L-End    |
| 2           | 数据处理或某一过程结束                   | FiniSH   |
| 3           | 显示参数设定时的站位信息                  | P1-01    |
| 4           | 上电故障                          | ERR-P    |
| 5           | 线性标定时零点基准提示                   | Lin0     |
| 6           | 线性标定时第一重量点基准提示                | Lin 50   |
| 7           | 线性标定时第二重量点基准提示                | Lin 100  |
| 8           | 线性标定时第三重量点基准提示                | Lin 150  |
| 9           | 线性标定时第四重量点基准提示                | Lin 200  |
| 10          | 线性标定时第五重量点基准提示                | Lin 500  |
| 11          | 线性标定时第六重量点基准提示                | Lin-F    |
| 12          | 校准时零点提示                       | CAL 0    |
| 13          | 校准时满载点或校准点提示                  | CALF     |
| 14          | 校准或线性表定时零点错误                  | ERR0     |
| 15          | 校准时校准点错误                      | ERR1     |
| 16          | 线性标定时线性错误                     | ERRL     |
| 17          | 数据处理中                         |          |
| 18          | 数据处理中或过程中继提示                  |          |
| 19          | 欠载                            | -Е       |
| 20          | 过载                            | +E       |
| 21          | 取消进程                          | CANCEL   |
| 22          | 空数据,结合其他信息进程忙提示,或清显<br>示数据区应用 | п        |
| 23          | 校准结束                          | -End-    |
| 24          | 初始化存储区                        | -InIT-   |
| 25          | AD 转换器故障                      | _AdERR_  |

| 26 | 系统设置中继提示 | SETSYS |
|----|----------|--------|
| 27 | 待机提示     | *      |
| 28 | 全自动校准提示  | -CAL-  |
|    |          |        |

注: 其中 6~10 及 12 条适用于部分称重模块, 其他内容通用, 但同一个系列不一定拥有上述全部表述。

(2)、介于 OFFF0000H~OFFFFF00H 特征数据的意义

0FFF0000H + DATA: DATA 代表线性标定时所应用的砝码值,厂家调试应用。DATA 意义如 0FFFC000H 字段特征数据。

OFFFC000H + DATA: DATA 代表校准时所应用的砝码值,10kg 以内以"g"为单位,不含小数点,如特征数据为: OFFFC000H + 500(即 OFFFC1F4H),则代表 500g标准砝码。10kg及以上的称重模块以"kg"为单位,不含小数点,如,特征数据为OFFFC000H + 20,则表示 20kg标准砝码。

## 2010H, 读写, 字长度 3: C参数数据, 从站响应数据如下:

| byte[0] | byte[1] | byte[2] | byte[3~18] | byte[19~20] |
|---------|---------|---------|------------|-------------|
| C6 值    | 03      | 16      |            | CRC         |
| 站号      | 功能码     | 数据字节长度  | 数据         | CRC         |

C 参数说明: C0 对应 byte[3], 此参数特殊应用, 不要更改。C1~C15 对应 byte[4~15]数据; 实际应用参见说明书参数表。

## 2、写控制命令(执行功能键操作)

| byte[0] | byte[1] | byte[2~3] | byte[4~5] | byte[6~7] |
|---------|---------|-----------|-----------|-----------|
| C6 值    | 06      | 1000H     | 1005      | CRC       |
| 站号      | 功能码     | 寄存器地址     | 命令        | CRC       |

#### 命令说明 HEX:

1001打印1002除皮

1003 模式

1004 校准

1005 开关

1006 预留

10F0 直读 暂不支持, 称重模块连续发出数据, 485 信号不再接受数据

10F1 问答 称重模块被动应答数据,适合 485 信号通信,默认

10F2 预留

10F3 预留

从站响应数据: 问答模式下, 应答信息与接收信息相同

## 3、写数据命令

| 主站报文格式  |         |           |           |         |            |             |
|---------|---------|-----------|-----------|---------|------------|-------------|
| byte[0] | byte[1] | byte[2~3] | byte[4~5] | byte[6] | byte[7~22] | byte[23~24] |
| C6 值    | 10H     | Addr      | 8         | 16      | Data       | CRC         |
| 站号      | 功能码     | 起始地址      | 寄存器字长     | 字节长     | 字节数据       | CRC         |

不同地址对应数据关系:

| 地址 HEX  | 2010H | 2020H | 2030H |
|---------|-------|-------|-------|
| 字长度 HEX | 8     | 8     | 8     |
| 数据意义    | C 参数  | 厂家配置  | 厂家配置  |

2010H 数据意义同上。

## 从站正确响应数据

| byte[0] | byte[1] | byte[2~3] | byte[4~5] | byte[6~7] |
|---------|---------|-----------|-----------|-----------|
| C6 值    | 10H     | Addr      | 8         | CRC       |
| 站号      | 功能码     | 起始地址      | 寄存器字长     | CRC       |

#### 错误响应

| byte[0] | byte[1] | byte[2] | byte[3~4] |
|---------|---------|---------|-----------|
| C6 值    | 86H     | 01H     | CRC       |
| 站号      | 差错码     | 异常码     | CRC       |

#### 二、站号(地址)设定

地址设定参数 C6: MODBUS RTU 协议有效调整地址范围 1-31, C6-0.即 0 号地址为公用地址, 用于单台调试应用, 多台联机时不能用此地址。调整操作步骤参见读写寄存器 1010H 数据, C0~C15 对应 byte[4~15]。

以电脑版调试软件"JD-MK",称重模块 JD220-4MK 为例。触控屏串口仪表(单独购买)显示界面与电脑端调试软件类同,不另作说明。该软件需要 windows .Net Freamwork4.5.2 组件支持,如果 windows 系统没有升级到.Net Freamwork4.5.2 组件,请前往 Windows 官网查找下载。

连接好数据线,接通称重模块电源,然后打开软件"JD-MK",(采用串口仪表的,此时接通仪表电源(DC12V))。选择当前在用的串口,站号(地址)默认为通用站号,0号。通过点击"打开串口"按钮,打开串口,成功后按钮位置显示:"关闭串口"。打开后默认在称重模式下。



<sup>&</sup>quot;鼠标左键选择点击"C参数"按钮。



点击窗口【打印】功能键,C1~C13 循环显示,【模式】功能键,改变每个参数下的参数数值。调整好参数后,点击【去皮】功能键,系统保存参数然后回到称重状态。

数字模块应用下, JD-MK系列有效的 C 参数功能表如下:

| Сх       | Сх—у    | 意义                   |
|----------|---------|----------------------|
| C3: 零点跟踪 | C3—0    | 无零点跟踪状态              |
|          | *C3—1   | 有零点跟踪                |
|          | C3—2    | 厂家调试、用户不可用           |
| C6:      | *C6—0   | 调试应用站号 (地址)          |
| 设备站号     | C6—1~31 | 现场应用站号 (地址)          |
| C7:      | C7—0    | 灵敏                   |
| 抗干扰程度    | *C7—1   | 低                    |
|          | C7—2    | 中                    |
|          | C7—3    | 高                    |
| C8: 上电状态 | C8—0    | 上电显示量程信息,持续3秒后回到待机状态 |
|          | C8—1    | 上电直接进入待机状态           |
|          | *C8—2   | 上电后进入称重状态            |

<sup>\*:</sup> 出厂默认状态。

## 三、校准操作

称重模块更换位置后并重新安置好后,需要进行校准操;季节环境变化后需要进行校准操作;环境温度变化较大、应用时间较长以后,比如连续工作一周,建议进行一次校准操作。

校准时需要周围自然环境良好,如台案稳固,无抖动; 无阳光照射; 无气流扰动。操作步骤如下:

确认秤盘处于出厂状态,或在用承载器(后续统称为秤盘)重量等同于原始出厂秤盘重量,且保持空载。

点击【校准】按钮,闪烁显示"CAL--0",系统采集零标准点数据。

<sup>&</sup>quot;调试参数"选项,厂家调试用,客户不可用,不要进入调整。如有必要需要再专业人员指导下调整应用。

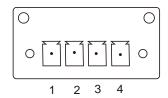
显示"CAL 200",将 200g 标准砝码轻轻放置于秤盘中央。

按【去皮】、按钮、系统采集 200g 砝码重量数据、大约 4s 后、校准完成。

校准完成后,取下 200g 砝码,然后重新加载,查看称量数据,复验校准准确度,如果显示重量允差在允许范围内,则校准成功,反之则需要重复校准过程。

注:校准过程中,在提示下一步操作的时候,可以按【校准】按钮取消校准操作。在数据采集过程中,系统忙状态,不接受按钮操作。

## 四、串口配置


## 1、波特率

19200 固定

- 2、DB9 孔定义 (232 模式):
  - 2 孔—— Tx;
  - 3 孔—— Rx
  - 5 孔—— 信号地
  - 8 孔—— 预留 485
  - 9 孔—— 预留 485

其他信号串口仪表专用, 用户避免应用。

3、穿墙式接线端子线序定义



## 四、注意事项

- 1、称重模块需要水平放置于固定台架上,台架无抖动;附近无热源;模块自身无阳光直射,工作温度范围 10℃~35℃,最佳工作温度范围 20℃±5℃,相对湿度 50 ~ 60 % R H;
  - 2、两条指令间隔时间建议大于 20ms, 连续获取重量数据命令, 建议大于等于 200ms;
- 3、执行直读命令后,数据帧周期为 200ms, 485 接口模式下,改变直读模式只能断电重启; 232 模式下可以直接发送"问答"指令改变其状态。